Tomoki Ozawa


Links to Google Scholar and arXiv

Preprints

  1. Takuto Tsuno, Shintaro Taie, Yosuke Takasu, Kazuya Yamashita, Tomoki Ozawa, Yoshiro Takahashi
    Gain engineering and topological atom laser in synthetic dimensions
    arXiv:2404.13769
  2. Tao Chen, Chenxi Huang, Ivan Velkovsky, Tomoki Ozawa, Hannah Price, Jacob P. Covey, Bryce Gadway
    Interaction-driven breakdown of Aharonov--Bohm caging in flat-band Rydberg lattices
    arXiv:2404.00737
  3. Ryo Takahashi, Tomoki Ozawa
    Bulk-entanglement-spectrum correspondence in PT- and PC-symmetric topological insulators
    arXiv:2403.18372
  4. Nathan Goldman, Tomoki Ozawa
    Relating the Hall conductivity to the many-body Chern number using Fermi's Golden rule and Kramers-Kronig relations
    arXiv:2403.03340
  5. W. N. Faugno, Tomoki Ozawa
    Geometric Characterization of Many Body Localization
    arXiv:2311.12280
  6. Greta Villa, Iacopo Carusotto, Tomoki Ozawa
    Mean-chiral displacement in coherently driven photonic lattices and its application to synthetic frequency dimensions
    arXiv:2309.16101
  7. Bruno Mera and Tomoki Ozawa
    Uniqueness of Landau levels and their analogs with higher Chern numbers
    arXiv:2304.00866
  8. Lisa Yamauchi, Tomoya Hayata, Masahito Uwamichi, Tomoki Ozawa, Kyogo Kawaguchi
    Chirality-driven edge flow and non-Hermitian topology in active nematic cells
    arXiv:2008.10852

Journal Articles

  1. Tomoki Ozawa, Tomoya Hayata
    Two-dimensional lattice with an imaginary magnetic field
    Phys. Rev. B 109, 085113 (2024); arXiv:2307.14635
  2. William N. Faugno, Mario Salerno, Tomoki Ozawa
    Density Dependent Gauge Field Inducing Emergent Su-Schrieffer-Heeger Physics, Solitons, and Condensates in a Discrete Nonlinear Schrödinger Equation
    Phys. Rev. Lett. 132, 023401 (2024); arXiv:2307.02952
  3. Grazia Salerno, Tomoki Ozawa, Päivi Törmä
    Drude weight and the many-body quantum metric in one-dimensional Bose systems
    Phys. Rev. B 108, L140503 (2023); arXiv:2307.10012
  4. Yaashnaa Singhal, Enrico Martello, Shraddha Agrawal, Tomoki Ozawa, Hannah Price, and Bryce Gadway
    Measuring the adiabatic non-Hermitian Berry phase in feedback-coupled oscillators
    Phys. Rev. Research 5, L032026 (2023); arXiv:2205.02700
  5. Ryo Takahashi and Tomoki Ozawa
    Bulk-edge correspondence of Stiefel-Whitney and Euler insulators through the entanglement spectrum and cutting procedure
    Phys. Rev. B 108, 075129 (2023); arXiv:2304.06974
  6. Gabriel Cáceres-Aravena, Bastián Real, Diego Guzmán-Silva, Paloma Vildoso, Ignacio Salinas, Alberto Amo, Tomoki Ozawa, Rodrigo A. Vicencio
    Edge-to-edge topological spectral transfer in diamond photonic lattices
    APL Photonics 8, 080801 (2023); arXiv:2301.04189
  7. Ritika Anandwade, Yaashnaa Singhal, Sai Naga Manoj Paladugu, Enrico Martello, Michael Castle, Shraddha Agrawal, Ellen Carlson, Cait Battle-McDonald, Tomoki Ozawa, Hannah M. Price, and Bryce Gadway
    Synthetic mechanical lattices with synthetic interactions
    Phys. Rev. A 108, 012221 (2023); arXiv:2107.09649
  8. Enrico Martello, Yaashnaa Singhal, Bryce Gadway, Tomoki Ozawa, Hannah M. Price
    Coexistence of stable and unstable population dynamics in a nonlinear non-Hermitian mechanical dimer
    Phys. Rev. E 107, 064211 (2023); arXiv:2302.03572
  9. Bruno Mera and Tomoki Ozawa
    Singular-connection approach to topological phases and resonant optical responses
    Phys. Rev. B 106, 245134 (2022); arXiv:2210.06844
  10. W. N. Faugno and Tomoki Ozawa
    Interaction-Induced Non-Hermitian Topological Phases from a Dynamical Gauge Field
    Phys. Rev. Lett. 129, 180401 (2022); arXiv:2210.01572
  11. Ken Mochizuki and Tomoki Ozawa
    Band structures under non-Hermitian periodic potentials: Connecting nearly-free and bi-orthogonal tight-binding models
    Phys. Rev. B 105, 174108 (2022); arXiv:2203.00247
  12. Min Yu, Yu Liu, Pengcheng Yang, Musang Gong, Qingyun Cao, Shaoliang Zhang, Haibin Liu, Markus Heyl, Tomoki Ozawa, Nathan Goldman, Jianming Cai
    Quantum Fisher information measurement and verification of the quantum Cramér–Rao bound in a solid-state qubit
    npj Quantum Information 8, 56 (2022); arXiv:2003.08373
  13. Armandas Balčytis, Tomoki Ozawa, Yasutomo Ota, Satoshi Iwamoto, Jun Maeda, Toshihiko Baba
    Synthetic dimension band structures on a Si CMOS photonic platform
    Science Advances 8, eabk0468 (2022); arXiv:2105.13742
  14. Hannah Price, Yidong Chong, Alexander Khanikaev, Henning Schomerus, Lukas J. Maczewsky, Mark Kremer, Matthias Heinrich, Alexander Szameit, Oded Zilberberg, Yihao Yang, Baile Zhang, Andrea Alù, Ronny Thomale, Iacopo Carusotto, Philippe St-Jean, Alberto Amo, Avik Dutt, Luqi Yuan, Shanhui Fan, Xuefan Yin, Chao Peng, Tomoki Ozawa, Andrea Blanco-Redondo
    Roadmap on Topological Photonics
    J. Phys. Photonics 4 032501 (2022); arXiv:2201.06315
  15. Bruno Mera and Tomoki Ozawa
    Engineering geometrically flat Chern bands with Fubini-Study Kähler structure
    Phys. Rev. B 104, 115160 (2021); arXiv:2107.09039
  16. Bruno Mera and Tomoki Ozawa
    Kähler geometry and Chern insulators: Relations between topology and the quantum metric
    Phys. Rev. B 104, 045104 (2021); arXiv:2103.11583
  17. Tomoki Ozawa and Bruno Mera
    Relations between topology and the quantum metric for Chern insulators
    Phys. Rev. B 104, 045103 (2021); arXiv:2103.11582
  18. Matteo Seclì, Tomoki Ozawa, Massimo Capone, Iacopo Carusotto
    Spatial and spectral mode-selection effects in topological lasers with frequency-dependent gain
    APL Photonics 6, 050803 (2021); arXiv:2012.10709
  19. Tomoki Ozawa
    Artificial magnetic field for synthetic quantum matter without dynamical modulation
    Phys. Rev. A 103, 033318 (2021); arXiv:2008.02412
  20. B. Real, O. Jamadi, M. Milićević, N. Pernet, P. St-Jean, T. Ozawa, G. Montambaux, I. Sagnes, A. Lemaître, L. Le Gratiet, A. Harouri, S. Ravets, J. Bloch, and A. Amo
    Semi-Dirac Transport and Anisotropic Localization in Polariton Honeycomb Lattices
    Phys. Rev. Lett. 125, 186601 (2020); arXiv:2004.03478
  21. Hannah M. Price, Tomoki Ozawa, Henning Schomerus
    Synthetic dimensions and topological chiral currents in mesoscopic rings
    Phys. Rev. Research 2, 032017(R) (2020); arXiv:1907.04231
  22. O. Jamadi, E. Rozas, G. Salerno, M. Milićević, T. Ozawa, I. Sagnes, A. Lemaître, L. Le Gratiet, A. Harouri, I. Carusotto, J. Bloch, A. Amo
    Direct observation of photonic Landau levels and helical edge states in strained honeycomb lattices
    Light: Science & Applications 9, 144 (2020); arXiv:2001.10395
  23. Yasutomo Ota, Kenta Takata, Tomoki Ozawa, Alberto Amo, Zhetao Jia, Boubacar Kante, Masaya Notomi, Yasuhiko Arakawa, Satoshi Iwamoto
    Active topological photonics
    Nanophotonics 9, 547 (2020); arXiv:1912.05126
  24. Min Yu, Pengcheng Yang, Musang Gong, Qingyun Cao, Qiuyu Lu, Haibin Liu, Shaoliang Zhang, Martin B. Plenio, Fedor Jelezko, Tomoki Ozawa, Nathan Goldman, Jianming Cai
    Experimental measurement of the quantum geometric tensor using coupled qubits in diamond
    National Science Review 7, 254-260 (2020); arXiv:1811.12840
  25. Tomoki Ozawa and Nathan Goldman
    Probing localization and quantum geometry by spectroscopy
    Phys. Rev. Research 1, 032019(R) (2019); arXiv:1904.11764
  26. M. Milićević, G. Montambaux, T. Ozawa, O. Jamadi, B. Real, I. Sagnes, A. Lemaître, L. Le Gratiet, A. Harouri, J. Bloch, A. Amo
    Type-III and tilted Dirac cones emerging from flat bands in photonic orbital graphene
    Phys. Rev. X 9, 031010 (2019); arXiv:1807.08650
    See also Physics - Synopsis: Topological Behavior Spotted in Photonic Systems
  27. Tomoki Ozawa and Hannah M. Price
    Topological quantum matter in synthetic dimensions
    Nature Reviews Physics 1, 349–357 (2019); arXiv:1910.00376
    You can read the journal version online via: https://rdcu.be/buB0n
    Cover of the issue adapted from our image: Volume 1 Issue 5, May 2019
  28. Tomoki Ozawa, Hannah M. Price, Alberto Amo, Nathan Goldman, Mohammad Hafezi, Ling Lu, Mikael Rechtsman, David Schuster, Jonathan Simon, Oded Zilberberg, Iacopo Carusotto
    Topological Photonics
    Rev. Mod. Phys. 91, 015006 (2019); arXiv:1802.04173
  29. Luca Asteria, Duc Thanh Tran, Tomoki Ozawa, Matthias Tarnowski, Benno S. Rem, Nick Fläschner, Klaus Sengstock, Nathan Goldman, Christof Weitenberg
    Measuring quantized circular dichroism in ultracold topological matter
    Nature Physics 15, 449–454 (2019) ; arXiv:1805.11077
  30. Tomoki Ozawa, Nathan Goldman
    Extracting the quantum metric tensor through periodic driving
    Phys. Rev. B 97, 201117(R) (2018); arXiv:1803.05818
  31. Tomoki Ozawa
    Steady-state Hall response and quantum geometry of driven-dissipative lattices
    Phys. Rev. B 97, 041108(R) (2018)arXiv:1708.00333
  32. P. St-Jean, V. Goblot, E. Galopin, A. Lemaître, T. Ozawa, L. Le Gratiet, I. Sagnes, J. Bloch, A. Amo
    Lasing in topological edge states of a one-dimensional lattice
    Nature Photonics 11, 651 (2017)arXiv:1704.07310
  33. Tomoki Ozawa, Alberto Amo, Jacqueline Bloch, Iacopo Carusotto
    Klein tunneling in driven-dissipative photonic graphene
    Phys. Rev. A 96, 013813 (2017)arXiv:1703.07634
    A figure from the paper chosen for Kaleidoscope of PRA
  34. Grazia Salerno, Tomoki Ozawa, Hannah M. Price, and Iacopo Carusotto
    Propagating edge states in strained honeycomb lattices
    Phys. Rev. B 95, 245418 (2017)arXiv:1702.02336
  35. Grazia Salerno, Alice Berardo, Tomoki Ozawa, Hannah M. Price, Ludovic Taxis, Nicola M. Pugno, Iacopo Carusotto
    Spin-orbit coupling in a hexagonal ring of pendula
    New J. Phys. 19, 055001 (2017)arXiv:1609.09651
    Published in Focus on Topological Mechanics
  36. M. Milićević, T. Ozawa, G. Montambaux, I. Carusotto, E. Galopin, A. Lemaître, L. Le Gratiet, I. Sagnes, J. Bloch, and A. Amo
    Orbital edge states in a photonic honeycomb lattice
    Phys. Rev. Lett. 118, 107403 (2017)arXiv:1609.06485
  37. Hannah M. Price, Tomoki Ozawa, and Nathan Goldman
    Synthetic dimensions for cold atoms from shaking a harmonic trap
    Phys. Rev. A 95, 023607 (2017)arXiv:1605.09310
  38. Tomoki Ozawa and Iacopo Carusotto
    Synthetic Dimensions with Magnetic Fields and Local Interactions in Photonic Lattices
    Phys. Rev. Lett. 118, 013601 (2017)arXiv:1607.00140
  39. Giovanni I. Martone, Tomoki Ozawa, Chunlei Qu, Sandro Stringari
    Optical-lattice-assisted magnetic phase transition in a spin-orbit-coupled Bose-Einstein condensate
    Phys. Rev. A 94, 043629 (2016)arXiv:1605.02108
  40. H. M. Price, O. Zilberberg, T. Ozawa, I. Carusotto, and N. Goldman
    Measurement of Chern numbers through center-of-mass responses
    Phys. Rev. B 93, 245113 (2016)arXiv:1602.01696
    Selected as Editor's Suggestion
  41. Tomoki Ozawa, Hannah M. Price, and Iacopo Carusotto
    Quantum Hall effect in momentum space
    Phys. Rev. B 93, 195201 (2016)arXiv:1602.07523
  42. Tomoki Ozawa, Hannah M. Price, Nathan Goldman, Oded Zilberberg, and Iacopo Carusotto
    Synthetic dimensions in integrated photonics: From optical isolation to 4D quantum Hall physics
    Phys. Rev. A 93, 043827 (2016)arXiv:1510.03910
  43. Grazia Salerno, Tomoki Ozawa, Hannah M. Price, and Iacopo Carusotto
    Floquet topological system based on frequency-modulated classical coupled harmonic oscillators
    Phys. Rev. B 93, 085105 (2016)arXiv:1510.04697
  44. Andrei C. Berceanu, Hannah M. Price, Tomoki Ozawa, Iacopo Carusotto
    Momentum-space Landau levels in driven-dissipative cavity arrays
    Phys. Rev. A 93, 013827 (2016)arXiv:1510.03054
  45. H. M. Price, O. Zilberberg, T. Ozawa, I. Carusotto, and N. Goldman
    Four-Dimensional Quantum Hall Effect with Ultracold Atoms
    Phys. Rev. Lett. 115, 195303 (2015)arXiv:1505.04387
    See also Physics - Synopsis: The Quantum Hall Effect Leaves Flatland
  46. Tomoki Ozawa, Hannah M. Price, and Iacopo Carusotto
    Momentum-space Harper-Hofstadter model
    Phys. Rev. A 92, 023609 (2015)arXiv:1411.1203
  47. Grazia Salerno, Tomoki Ozawa, Hannah M. Price and Iacopo Carusotto
    How to directly observe Landau levels in driven-dissipative strained honeycomb lattices
    2D Materials 2, 034015 (2015)arXiv:1504.04014
    Published in a focus issue on Artificial Graphene
  48. M. Milićević, T. Ozawa, P. Andreakou, I. Carusotto, T. Jacqmin, E. Galopin, A. Lemaître, L. Le Gratiet, I. Sagnes, J. Bloch, and A. Amo
    Edge states in polariton honeycomb lattices
    2D Materials 2, 034012 (2015)arXiv:1504.05761
    Published in a focus issue on Artificial Graphene
  49. Hannah M. Price, Tomoki Ozawa, Nigel R. Cooper, and Iacopo Carusotto
    Artificial magnetic fields in momentum space in spin-orbit-coupled systems
    Phys. Rev. A 91, 033606 (2015)arXiv:1412.3638
  50. Hannah M. Price, Tomoki Ozawa, and Iacopo Carusotto
    Quantum Mechanics with a Momentum-Space Artificial Magnetic Field
    Phys. Rev. Lett. 113, 190403 (2014)arXiv:1403.6041
    Featured in Phys.org
  51. Tomoki Ozawa, Alessio Recati, Marion Delehaye, Frédéric Chevy, and Sandro Stringari
    Chandrasekhar-Clogston limit and critical polarization in a Fermi-Bose superfluid mixture
    Phys. Rev. A 90, 043608 (2014)arXiv:1405.7187
  52. Tomoki Ozawa and Iacopo Carusotto
    Anomalous and Quantum Hall Effects in Lossy Photonic Lattices
    Phys. Rev. Lett. 112, 133902 (2014)arXiv:1307.6650
  53. Tomoki Ozawa and Sandro Stringari
    Discontinuities in the First and Second Sound Velocities at the Berezinskii-Kosterlitz-Thouless Transition
    Phys. Rev. Lett. 112, 025302 (2014)arXiv:1310.3654
  54. Tomoki Ozawa, Lev P. Pitaevskii, and Sandro Stringari
    Supercurrent and dynamical instability of spin-orbit-coupled ultracold Bose gases
    Phys. Rev. A 87, 063610 (2013)arXiv:1305.0645
  55. Tomoki Ozawa and Gordon Baym
    Condensation Transition of Ultracold Bose Gases with Rashba Spin-Orbit Coupling
    Phys. Rev. Lett. 110, 085304 (2013)arXiv:1207.5263
  56. Tomoki Ozawa and Gordon Baym
    Stability of Ultracold Atomic Bose Condensates with Rashba Spin-Orbit Coupling against Quantum and Thermal Fluctuations
    Phys. Rev. Lett. 109, 025301 (2012)arXiv:1203.6367
  57. Tomoki Ozawa and Gordon Baym
    Striped states in weakly trapped ultracold Bose gases with Rashba spin-orbit coupling
    Phys. Rev. A 85, 063623 (2012); Erratum: Phys. Rev. A 86, 019905(E) (2012)arXiv:1204.6534
  58. Tomoki Ozawa and Gordon Baym
    Ground state phases of ultracold bosons with Rashba-Dresselhaus spin-orbit coupling
    Phys. Rev. A 85, 013612 (2012)arXiv:1109.4954
  59. Tomoki Ozawa and Gordon Baym
    Renormalization of interactions of ultracold atoms in simulated Rashba gauge fields
    Phys. Rev. A 84, 043622 (2011)arXiv:1107.3162
  60. Tomoki Ozawa and Gordon Baym
    Population imbalance and pairing in the BCS-BEC crossover of three-component ultracold fermions
    Phys. Rev. A 82, 063615 (2010)arXiv:1011.0467
  61. Gordon Baym and Tomoki Ozawa
    Two slit diffraction with highly charged particles: Niels Bohr's consistency argument that the electromagnetic field must be quantized
    Proc. Natl. Acad. Sci. USA 106, 3035-3040 (2009)arXiv:0902.2615

Expository Articles and Notes

  1. Tomoki Ozawa
    Topological phases of matter in quantum engineered systems [in Japanese]
    Lecture note for 67th Condensed Matter Physics Summer School
  2. Tomoki Ozawa, Ramy El-Ganainy, and Alberto Amo
    Photonic Topological Materials: feature introduction
    Optical Materials Express 11, 1592-1593 (2021)
    This is an introduction article to the feature issue of Optical Materials Expresss on Photonic Topological Materials
  3. Tomoki Ozawa
    Study of Topological Lattice Models with Synthetic Dimensions [in Japanese]
    BUTSURI 75, 201 (2020)
  4. Tomoki Ozawa
    Ultracold atoms: Feel the gauge
    Nature Physics 11, 801 (2015)

Conference Proceedings

  1. Hannah M. Price, Andrei Berceanu, Tomoki Ozawa, and Iacopo Carusotto
    Momentum-space Landau levels in arrays of coupled ring resonators
    Proc. SPIE 9762, Advances in Photonics of Quantum Computing, Memory, and Communication IX, 97620W (March 16, 2016)
  2. Hannah M. Price, Tomoki Ozawa, Nathan Goldman, Oded Zilberberg, and Iacopo Carusotto
    Towards four-dimensional photonics
    Proc. SPIE 9762, Advances in Photonics of Quantum Computing, Memory, and Communication IX, 97620V (March 16, 2016)
    Selected in SPIE Newsroom: Four-dimensional integrated photonic devices
  3. Gordon Baym and Tomoki Ozawa
    Condensation of bosons with Rashba-Dresselhaus spin-orbit coupling
    J. Phys.: Conf. Ser. 529 012006 (2014)